Kottke, T., Xie, A., Larsen, D. S. & Hoff, W. D. Photoreceptors take charge: emerging principles for light sensing. Annu. Rev. Biophys. 47, 291–313 (2018).
Google Scholar
Padmanabhan, S., Pérez-Castaño, R., Osete-Alcaraz, L., Polanco, M. C. & Elías-Arnanz, M. Vitamin B12 photoreceptors. Vitam. Horm. 119, 149–184 (2022).
Google Scholar
Banerjee, R. & Ragsdale, S. W. The many faces of vitamin B12: catalysis by cobalamin-dependent enzymes. Annu. Rev. Biochem. 72, 209–247 (2003).
Google Scholar
Ortiz-Guerrero, J. M., Polanco, M. C., Murillo, F. J., Padmanabhan, S. & Elias-Arnanz, M. Light-dependent gene regulation by a coenzyme B12-based photoreceptor. Proc. Natl Acad. Sci. USA 108, 7565–7570 (2011).
Google Scholar
Jost, M. et al. Structural basis for gene regulation by a B12-dependent photoreceptor. Nature 526, 536–541 (2015).
Google Scholar
Poddar, H. et al. A guide to time-resolved structural analysis of light-activated proteins. FEBS J. 289, 576–595 (2022).
Google Scholar
Miller, R. J. D., Paré-Labrosse, O., Sarracini, A. & Besaw, J. E. Three-dimensional view of ultrafast dynamics in photoexcited bacteriorhodopsin in the multiphoton regime and biological relevance. Nat. Commun. 11, 1240 (2020).
Google Scholar
Allen, L. H. Vitamin b-12. Adv. Nutr. 3, 54–55 (2012).
Google Scholar
Cheng, Z., Yamamoto, H. & Bauer, C. E. Cobalamin’s (Vitamin B12) surprising function as a photoreceptor. Trends Biochem. Sci. 41, 647–650 (2016).
Google Scholar
Yu, Y. et al. SignatureFinder enables sequence mining to identify cobalamin-dependent photoreceptor proteins. FEBS J. 292, 635–652 (2025).
Google Scholar
Zhang, S. et al. Photocobilins integrate B12 and bilin photochemistry for enzyme control. Nat. Commun. 15, 2740 (2024).
Google Scholar
Zheng, Y., Chen, F., Frank, S., Quispe Haro, J. J. & Wegner, S. V. Three-color protein photolithography with green, red, and far-red light. Small 20, 2405687 (2024).
Fok, H. K. F. et al. Red-shifting B12-dependent photoreceptor protein via optical coupling for inducible living materials. Angew. Chem. Int. Ed. 63, e202411105 (2024).
Google Scholar
Kainrath, S., Stadler, M., Reichhart, E., Distel, M. & Janovjak, H. Green-light-induced inactivation of receptor signaling using cobalamin-binding domains. Angew. Chem. Int. Ed. Engl. 56, 4608–4611 (2017).
Google Scholar
Chatelle, C. et al. A green-light-responsive system for the control of transgene expression in mammalian and plant cells. ACS Synth. Biol. 7, 1349–1358 (2018).
Google Scholar
Mansouri, M. et al. Smart-watch-programmed green-light-operated percutaneous control of therapeutic transgenes. Nat. Commun. 12, 3388 (2021).
Google Scholar
Wang, R., Yang, Z., Luo, J., Hsing, I. M. & Sun, F. B12-dependent photoresponsive protein hydrogels for controlled stem cell/protein release. Proc. Natl Acad. Sci. USA 114, 5912–5917 (2017).
Google Scholar
Narayan, O. P., Mu, X., Hasturk, O. & Kaplan, D. L. Dynamically tunable light responsive silk-elastin-like proteins. Acta Biomater. 121, 214–223 (2021).
Google Scholar
Xu, D., Ricken, J. & Wegner, S. V. Turning cell adhesions ON or OFF with high spatiotemporal precision using the green light responsive protein CarH. Chemistry 26, 9859–9863 (2020).
Google Scholar
Jost, M., Simpson, J. H. & Drennan, C. L. The transcription factor CarH safeguards use of adenosylcobalamin as a light sensor by altering the photolysis products. Biochemistry 54, 3231–3234 (2015).
Google Scholar
Bridwell-Rabb, J. & Drennan, C. L. Vitamin B12 in the spotlight again. Curr. Opin. Chem. Biol. 37, 63–70 (2017).
Google Scholar
Poddar, H. et al. Redox driven B12-ligand switch drives CarH photoresponse. Nat. Commun. 14, 5082 (2023).
Google Scholar
Kutta, R. J. et al. The photochemical mechanism of a B12-dependent photoreceptor protein. Nat. Commun. 6, 7907 (2015).
Google Scholar
Miller, N. A. et al. The photoactive excited state of the B12-based photoreceptor CarH. J. Phys. Chem. B 124, 10732–10738 (2020).
Google Scholar
Branden, G. & Neutze, R. Advances and challenges in time-resolved macromolecular crystallography. Science 373, eaba0954 (2021).
Weik, M. & Domratcheva, T. Insight into the structural dynamics of light sensitive proteins from time-resolved crystallography and quantum chemical calculations. Curr. Opin. Struct. Biol. 77, 102496 (2022).
Google Scholar
Yabashi, M., Tanaka, H. & Ishikawa, T. Overview of the SACLA facility. J. Synchrotron Radiat. 22, 477–484 (2015).
Google Scholar
Milne, J. C. et al. SwissFEL: the Swiss X-ray free electron laser. Appl. Sci. 7, 720–777 (2017).
Barends, T. R. M. et al. Influence of pump laser fluence on ultrafast myoglobin structural dynamics. Nature 626, 905–911 (2024).
Google Scholar
Pounot, K., Schiro, G. & Levantino, M. Tracking the structural dynamics of proteins with time-resolved X-ray solution scattering. Curr. Opin. Struct. Biol. 82, 102661 (2023).
Google Scholar
Toda, M. J., Lodowski, P., Mamun, A. A. & Kozlowski, P. M. Photoproduct formation in coenzyme B12-dependent CarH via a singlet pathway. J. Photochem. Photobiol. B 232, 112471 (2022).
Google Scholar
Weik, M. & Colletier, J.-P. Temperature-dependent macromolecular X-ray crystallography. Acta Crystallogr. D 66, 437–446 (2010).
Google Scholar
Caramello, N. & Royant, A. From femtoseconds to minutes: time-resolved macromolecular crystallography at XFELs and synchrotrons. Acta Crystallogr. D 80, 60–79 (2024).
von Stetten, D. et al. In crystallo optical spectroscopy (icOS) as a complementary tool on the macromolecular crystallography beamlines of the ESRF. Acta Crystallogr. D 71, 15–26 (2015).
Google Scholar
Henry, E. R. & Hofrichter, J. in Methods in Enzymology (eds Brand, L. & Johnson, M. L.) Vol. 210, 129–192 (Academic Press, 1992).
Toda, M. J., Mamun, A. A., Lodowski, P. & Kozlowski, P. M. Why is CarH photolytically active in comparison to other B12-dependent enzymes? J. Photochem. Photobiol. B 209, 111919 (2020).
Google Scholar
Kuta, J., Wuerges, J., Randaccio, L. & Kozlowski, P. M. Axial bonding in alkylcobalamins: DFT analysis of the inverse versus normal trans influence. J. Phys. Chem. A 113, 11604–11612 (2009).
Google Scholar
Poddar, H. et al. An unusual light-sensing function for coenzyme B12 in bacterial transcription regulator CarH. Methods Enzymol. 668, 349–372 (2022).
Google Scholar
Shoeman, R. L., Hartmann, E. & Schlichting, I. Growing and making nano- and microcrystals. Nat. Protoc. 18, 854–882 (2023).
Google Scholar
Stoll, S. & Schweiger, A. EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J. Magn. Reson. 178, 42–55 (2006).
Google Scholar
Tono, K. et al. Diverse application platform for hard X-ray diffraction in SACLA (DAPHNIS): application to serial protein crystallography using an X-ray free-electron laser. J. Synchrotron Radiat. 22, 532–537 (2015).
Google Scholar
Botha, S. et al. Room-temperature serial crystallography at synchrotron X-ray sources using slowly flowing free-standing high-viscosity microstreams. Acta Crystallogr. D 71, 387–397 (2015).
Google Scholar
Shimazu, Y. et al. High-viscosity sample-injection device for serial femtosecond crystallography at atmospheric pressure. J. Appl. Crystallogr. 52, 1280–1288 (2019).
Google Scholar
Carrillo, M. et al. Micro-structured polymer fixed targets for serial crystallography at synchrotrons and XFELs. IUCrJ 10, 678–693 (2023).
Google Scholar
White, T. Processing serial crystallography data with CrystFEL: a step-by-step guide. Acta Crystallogr. D 75, 219–233 (2019).
McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).
Google Scholar
Murshudov, G. N. et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D 67, 355–367 (2011).
Google Scholar
Agirre, J. et al. The CCP4 suite: integrative software for macromolecular crystallography. Acta Crystallogr. D 79, 449–461 (2023).
Google Scholar
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).
Google Scholar
Ursby, T. & Bourgeois, D. Improved estimation of structure-factor difference amplitudesfrom poorly accurate data. Acta Crystallogr. A 53, 564–575 (1997).
Google Scholar
Genick, U. Structure-factor extrapolation using the scalar approximation: theory, applications and limitations. Acta Crystallogr. D 63, 1029–1041 (2007).
Google Scholar
De Zitter, E., Coquelle, N., Oeser, P., Barends, T. R. M. & Colletier, J. P. Xtrapol8 enables automatic elucidation of low-occupancy intermediate-states in crystallographic studies. Commun. Biol. 5, 640 (2022).
Google Scholar
Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D 75, 861–877 (2019).
Google Scholar
Gorel, A., Schlichting, I. & Barends, T. R. M. Discerning best practices in XFEL-based biological crystallography — standards for nonstandard experiments. IUCrJ 8, 532–543 (2021).
Google Scholar
Horrell, S. et al. Fixed target serial data collection at diamond light source. J. Vis. Exp. 168, e62200 (2021).
McCarthy, A. A. et al. Current and future perspectives for structural biology at the Grenoble EPN campus: a comprehensive overview. J. Synchrotron Radiat. 32, 577–594 (2025).
Wulff, M. et al. The realization of sub-nanosecond pump and probe experiments at the ESRF. Faraday Discuss. 122, 13–26 (2003).
Google Scholar
Cammarata, M. et al. Chopper system for time resolved experiments with synchrotron radiation. Rev. Sci. Instrum. 80, 015101 (2009).
Google Scholar
Gaussian 16 Rev. A.03 (Wallingford, CT, 2016).
Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).
Google Scholar
Kornobis, K. et al. Electronically excited states of vitamin B12: benchmark calculations including time-dependent density functional theory and correlated ab initio methods. J. Phys. Chem. A 115, 1280–1292 (2011).
Google Scholar
Hirao, H. Which DFT functional performs well in the calculation of methylcobalamin? Comparison of the B3LYP and BP86 functionals and evaluation of the impact of empirical dispersion correction. J. Phys. Chem A 115, 9308–9313 (2011).
Google Scholar
Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).
Google Scholar
Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).
Google Scholar
Maier, J. A. et al. ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 11, 3696–3713 (2015).
Google Scholar
Case, D. A. et al. AmberTools. J. Chem. Inf. Model. 63, 6183–6191 (2023).
Google Scholar
Marques, H. M., Ngoma, B., Egan, T. J. & Brown, K. L. Parameters for the amber force field for the molecular mechanics modeling of the cobalt corrinoids. J. Mol. Struct. 561, 71–91 (2001).
Google Scholar
Perdew, J. P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B 33, 8822–8824 (1986).
Google Scholar
Runge, E. & Gross, E. K. U. Density-functional theory for time-dependent systems. Phys. Rev. Lett. 52, 997–1000 (1984).
Google Scholar
Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098–3100 (1988).
Google Scholar
Weigend, F., Häser, M., Patzelt, H. & Ahlrichs, R. RI-MP2: optimized auxiliary basis sets and demonstration of efficiency. Chem. Phys. Lett. 294, 143–152 (1998).
Google Scholar
Eichkorn, K., Weigend, F., Treutler, O. & Ahlrichs, R. Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials. Theor. Chem. Acc. 97, 119–124 (1997).
Google Scholar
Frisch, M. J. et al. Gaussian 09, revision B.01. (2010).
