Close Menu

    Subscribe to Updates

    Get the latest creative news from FooBar about art, design and business.

    What's Hot

    The secret to long life? It could be in the genes after all, say scientists | Genetics

    Critically endangered skink births expected after captive breeding program success – video | Endangered species

    NHS medical negligence persisting in England ‘despite 24 years of warnings’ | NHS

    Facebook X (Twitter) Instagram
    Facebook X (Twitter) YouTube LinkedIn
    Naija Global News |
    Friday, January 30
    • Business
    • Health
    • Politics
    • Science
    • Sports
    • Education
    • Social Issues
    • Technology
    • More
      • Crime & Justice
      • Environment
      • Entertainment
    Naija Global News |
    You are at:Home»Science»Predictive coding of reward in the hippocampus
    Science

    Predictive coding of reward in the hippocampus

    onlyplanz_80y6mtBy onlyplanz_80y6mtJanuary 14, 20260010 Mins Read
    Share Facebook Twitter Pinterest LinkedIn Tumblr Email
    Predictive coding of reward in the hippocampus
    Fig. 1: Imaging of CA1 neuronal activity in mice while they perform a reward-based task.
    Share
    Facebook Twitter LinkedIn Pinterest Email

  • Schultz, W., Dayan, P. & Montague, P. R. A neural substrate of prediction and reward. Science 275, 1593–1599 (1997).

    Article 
    PubMed 

    Google Scholar 

  • Keller, G. B. & Mrsic-Flogel, T. D. Predictive processing: a canonical cortical computation. Neuron 100, 424–435 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schultz, W. Predictive reward signal of dopamine neurons. J. Neurophysiol. 80, 1–27 (1998).

    Article 
    PubMed 

    Google Scholar 

  • O’Keefe, J. & Nadel, L. The Hippocampus as a Cognitive Map (Clarendon Press, 1978).

  • Stachenfeld, K. L., Botvinick, M. M. & Gershman, S. J. The hippocampus as a predictive map. Nat. Neurosci. 20, 1643–1653 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Levenstein, D., Efremov, A., Eyono, R. H., Peyrache, A. & Richards, B. Sequential predictive learning is a unifying theory for hippocampal representation and replay. Preprint at bioRxiv https://doi.org/10.1101/2024.04.28.591528 (2024).

  • Sosa, M. & Giocomo, L. M. Navigating for reward. Nat. Rev. Neurosci. 22, 472–487 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, I., Griffin, A. L., Zilli, E. A., Eichenbaum, H. & Hasselmo, M. E. Gradual translocation of spatial correlates of neuronal firing in the hippocampus toward prospective reward locations. Neuron 51, 639–650 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Aoki, Y., Igata, H., Ikegaya, Y. & Sasaki, T. The integration of goal-directed signals onto spatial maps of hippocampal place cells. Cell Rep. 27, 1516–1527 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Gauthier, J. L. & Tank, D. W. A dedicated population for reward coding in the hippocampus. Neuron 99, 179–193 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kumar, M. G., Bordelon, B., Zavatone-Veth, J. A. & Pehlevan, C. A model of place field reorganization during reward maximization. Proc. Mach. Learn. Res. 267, 31892–31929 (2025).

  • O’Keefe, J. & Dostrovsky, J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 34, 171–175 (1971).

    Article 
    PubMed 

    Google Scholar 

  • Deshmukh, S. S. & Knierim, J. J. Influence of local objects on hippocampal representations: landmark vectors and memory. Hippocampus 23, 253–267 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Kraus, B. J., Robinson, R. J. 2nd, White, J. A., Eichenbaum, H. & Hasselmo, M. E. Hippocampal ‘time cells’: time versus path integration. Neuron 78, 1090–1101 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aronov, D., Nevers, R. & Tank, D. W. Mapping of a non-spatial dimension by the hippocampal-entorhinal circuit. Nature 543, 719–722 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sosa, M., Plitt, M. H. & Giocomo, L. M. A flexible hippocampal population code for experience relative to reward. Nat. Neurosci. 28, 1497–1509 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kaufman, A. M., Geiller, T. & Losonczy, A. A role for the locus coeruleus in hippocampal CA1 place cell reorganization during spatial reward learning. Neuron 105, 1018–1026 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dupret, D., O’Neill, J., Pleydell-Bouverie, B. & Csicsvari, J. The reorganization and reactivation of hippocampal maps predict spatial memory performance. Nat. Neurosci. 13, 995–1002 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, S.-H. et al. Neural signals related to outcome evaluation are stronger in CA1 than CA3. Front. Neural Circuits 11, 40 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lisman, J. & Redish, A. D. Prediction, sequences and the hippocampus. Philos. Trans. R. Soc. B 364, 1193–1201 (2009).

    Article 

    Google Scholar 

  • Aharoni, D. & Hoogland, T. M. Circuit investigations with open-source miniaturized microscopes: past, present and future. Front. Cell. Neurosci. 13, 141 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pnevmatikakis, E. A. & Giovannucci, A. NoRMCorre: an online algorithm for piecewise rigid motion correction of calcium imaging data. J. Neurosci. Methods 291, 83–94 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Zhou, P. et al. Efficient and accurate extraction of in vivo calcium signals from microendoscopic video data. eLife 7, e28728 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mosser, C.-A. et al. The McGill-Mouse-Miniscope platform: a standardized approach for high-throughput imaging of neuronal dynamics during behavior. Genes Brain Behav. 20, e12686 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Bussey, T. J. et al. New translational assays for preclinical modelling of cognition in schizophrenia: the touchscreen testing method for mice and rats. Neuropharmacology 62, 1191–1203 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Schneider, S., Lee, J. H. & Mathis, M. W. Learnable latent embeddings for joint behavioural and neural analysis. Nature 617, 360–368 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu, H., Baracskay, P., O’Neill, J. & Csicsvari, J. Assembly responses of hippocampal CA1 place cells predict learned behavior in goal-directed spatial tasks on the radial eight-arm maze. Neuron 101, 119–132.e4 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Mehta, M. R., Barnes, C. A. & McNaughton, B. L. Experience-dependent, asymmetric expansion of hippocampal place fields. Proc. Natl Acad. Sci. USA 94, 8918–8921 (1997).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Berke, J. D. What does dopamine mean?. Nat. Neurosci. 21, 787–793 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Glimcher, P. W. Understanding dopamine and reinforcement learning: the dopamine reward prediction error hypothesis. Proc. Natl Acad. Sci. USA 108, 15647–15654 (2011).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Watabe-Uchida, M., Eshel, N. & Uchida, N. Neural circuitry of reward prediction error. Annu. Rev. Neurosci. 40, 373–394 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dayan, P. Improving generalization for temporal difference learning: the successor representation. Neural Comput. 5, 613–624 (1993).

    Article 

    Google Scholar 

  • Gershman, S. J., Moore, C. D., Todd, M. T., Norman, K. A. & Sederberg, P. B. The successor representation and temporal context. Neural Comput. 24, 1553–1568 (2012).

    Article 
    MathSciNet 
    PubMed 

    Google Scholar 

  • Maes, E. J. P. et al. Causal evidence supporting the proposal that dopamine transients function as temporal difference prediction errors. Nat. Neurosci. 23, 176–178 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, H. R. et al. A unified framework for dopamine signals across timescales. Cell 183, 1600–1616 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lisman, J. E. & Grace, A. A. The hippocampal-VTA loop: controlling the entry of information into long-term memory. Neuron 46, 703–713 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Sutton, R. S. & Barto, A. G. Reinforcement Learning: An Introduction (MIT Press, 1998).

  • Amo, R. et al. A gradual temporal shift of dopamine responses mirrors the progression of temporal difference error in machine learning. Nat. Neurosci. 25, 1082–1092 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Foster, D. J., Morris, R. G. & Dayan, P. A model of hippocampally dependent navigation, using the temporal difference learning rule. Hippocampus 10, 1–16 (2000).

    Article 
    PubMed 

    Google Scholar 

  • Kumar, M. G., Tan, C., Libedinsky, C., Yen, S.-C. & Tan, A. Y.-Y. One-shot learning of paired association navigation with biologically plausible schemas. Preprint at https://doi.org/10.48550/arXiv.2106.03580 (2021).

  • Fang, C. & Stachenfeld, K. L. Predictive auxiliary objectives in deep RL mimic learning in the brain. In The 12 International Conference on Learning Representations (ICLR, 2024).

  • Lillicrap, T. P., Cownden, D., Tweed, D. B. & Akerman, C. J. Random synaptic feedback weights support error backpropagation for deep learning. Nat. Commun. 7, 13276 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Miconi, T. Biologically plausible learning in recurrent neural networks reproduces neural dynamics observed during cognitive tasks. eLife 6, e20899 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Murray, J. M. Local online learning in recurrent networks with random feedback. eLife 8, e43299 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nøkland, A. Direct feedback alignment provides learning in deep neural networks. In Proc. 30th International Conference on Neural Information Processing Systems 1045–1053 (NIPS, 2016).

  • Overwiening, J., Kumar, M. G. & Sompolinsky, H. TeDFA-δ: Temporal integration in deep spiking networks trained with feedback alignment improves policy learning. In 8th Annual Conference on Cognitive Computational Neuroscience (CCM, 2025).

  • Heath, C. J., Phillips, B. U., Bussey, T. J. & Saksida, L. M. Measuring motivation and reward-related decision making in the rodent operant touchscreen system. Curr. Protoc. Neurosci. 74, 8.34.1–8.34.20 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Kim, C. H. et al. Trial-unique, delayed nonmatching-to-location (TUNL) touchscreen testing for mice: sensitivity to dorsal hippocampal dysfunction. Psychopharmacology 232, 3935–3945 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Friedrich, J., Zhou, P. & Paninski, L. Fast online deconvolution of calcium imaging data. PLoS Comput. Biol. 13, e1005423 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lauer, J. et al. Multi-animal pose estimation, identification and tracking with DeepLabCut. Nat. Methods 19, 496–504 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pnevmatikakis, E. A. et al. Simultaneous denoising, deconvolution, and demixing of calcium imaging data. Neuron 89, 285–299 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sheintuch, L. et al. Tracking the same neurons across multiple days in Ca2+ imaging data. Cell Rep. 21, 1102–1115 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, W. et al. Simultaneous multi-plane imaging of neural circuits. Neuron 89, 269–284 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, T., Kornblith, S., Norouzi, M. & Hinton, G. A simple framework for contrastive learning of visual representations. In International Conference on Machine Learning 1597–1607 (PMLR, 2020).

  • Kraskov, A., Stogbauer, H. & Grassberger, P. Estimating mutual information. Phys. Rev. E 69, 066138 (2004).

    Article 
    ADS 
    MathSciNet 

    Google Scholar 

  • Ross, B. C. Mutual information between discrete and continuous data sets. PLoS ONE 9, e87357 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Markus, E. J., Barnes, C. A., McNaughton, B. L., Gladden, V. L. & Skaggs, W. E. Spatial information content and reliability of hippocampal CA1 neurons: effects of visual input. Hippocampus 4, 410–421 (1994).

    Article 
    PubMed 

    Google Scholar 

  • Floresco, S. B., Todd, C. L. & Grace, A. A. Glutamatergic afferents from the hippocampus to the nucleus accumbens regulate activity of ventral tegmental area dopamine neurons. J. Neurosci. 21, 4915–4922 (2001).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Barnstedt, O., Mocellin, P. & Remy, S. A hippocampus-accumbens code guides goal-directed appetitive behavior. Nat. Commun. 15, 3196 (2024).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kalivas, P. W., Churchill, L. & Klitenick, M. A. GABA and enkephalin projection from the nucleus accumbens and ventral pallidum to the ventral tegmental area. Neuroscience 57, 1047–1060 (1993).

    Article 
    PubMed 

    Google Scholar 

  • Ibrahim, K. M. et al. Dorsal hippocampus to nucleus accumbens projections drive reinforcement via activation of accumbal dynorphin neurons. Nat. Commun. 15, 750 (2024).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Russo, S. J. & Nestler, E. J. The brain reward circuitry in mood disorders. Nat. Rev. Neurosci. 14, 609–625 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Kumar, M. G., Tan, C., Libedinsky, C., Yen, S.-C. & Tan, A. Y. Y. A nonlinear hidden layer enables actor-critic agents to learn multiple paired association navigation. Cereb. Cortex 32, 3917–3936 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Krishnan, S., Heer, C., Cherian, C. & Sheffield, M. E. J. Reward expectation extinction restructures and degrades CA1 spatial maps through loss of a dopaminergic reward proximity signal. Nat. Commun. 13, 6662 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bordelon, B. & Pehlevan, C. Self-consistent dynamical field theory of kernel evolution in wide neural networks. J. Stat. Mech. 2023, 114009 (2023).

    Article 
    MathSciNet 

    Google Scholar 

  • Vyas, N. et al. Feature-learning networks are consistent across widths at realistic scales. Adv. Neural Inf. Process. Syst. 36, 1036–1060 (2023).

  • Paninski, L. & Cunningham, J. P. Neural data science: accelerating the experiment-analysis-theory cycle in large-scale neuroscience. Curr. Opin. Neurobiol. 50, 232–241 (2018).

  • Jazayeri, M. & Ostojic, S. Interpreting neural computations by examining intrinsic and embedding dimensionality of neural activity. Curr. Opin. Neurobiol. 70, 113–120 (2021).

  • Urai, A. E. et al. Large-scale neural recordings call for new insights to link brain and behavior. Nat. Neurosci. 25, 11–19 (2022).

  • Yu, B. M. et al. Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity. J. Neurophysiol. 102, 614–635 (2009)

  • Hollup, S. A. Molden, S, Donnett, J. G., Moser, M. B. & Moser,E. I. Accumulation of hippocampal place fields at the goal location in an annular watermaze task. J. Neurosci. 21, 1635–1644 (2001).

  • coding hippocampus Predictive reward
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
    Previous ArticleHorses Can Smell Your Fear, Bizarre Sweat Study Finds
    Next Article A Look At Antarctica From Above
    onlyplanz_80y6mt
    • Website

    Related Posts

    The secret to long life? It could be in the genes after all, say scientists | Genetics

    January 30, 2026

    are AI translators up for the job?

    January 30, 2026

    U.S. life expectancy hits all-time high

    January 30, 2026
    Add A Comment
    Leave A Reply Cancel Reply

    Top Posts

    Watch Lady Gaga’s Perform ‘Vanish Into You’ on ‘Colbert’

    September 9, 20251 Views

    Advertisers flock to Fox seeking an ‘audience of one’ — Donald Trump

    July 13, 20251 Views

    A Setback for Maine’s Free Community College Program

    June 19, 20251 Views
    Stay In Touch
    • Facebook
    • YouTube
    • TikTok
    • WhatsApp
    • Twitter
    • Instagram
    Latest Reviews

    At Chile’s Vera Rubin Observatory, Earth’s Largest Camera Surveys the Sky

    By onlyplanz_80y6mtJune 19, 2025

    SpaceX Starship Explodes Before Test Fire

    By onlyplanz_80y6mtJune 19, 2025

    How the L.A. Port got hit by Trump’s Tariffs

    By onlyplanz_80y6mtJune 19, 2025

    Subscribe to Updates

    Get the latest tech news from FooBar about tech, design and biz.

    Most Popular

    Watch Lady Gaga’s Perform ‘Vanish Into You’ on ‘Colbert’

    September 9, 20251 Views

    Advertisers flock to Fox seeking an ‘audience of one’ — Donald Trump

    July 13, 20251 Views

    A Setback for Maine’s Free Community College Program

    June 19, 20251 Views
    Our Picks

    The secret to long life? It could be in the genes after all, say scientists | Genetics

    Critically endangered skink births expected after captive breeding program success – video | Endangered species

    NHS medical negligence persisting in England ‘despite 24 years of warnings’ | NHS

    Recent Posts
    • The secret to long life? It could be in the genes after all, say scientists | Genetics
    • Critically endangered skink births expected after captive breeding program success – video | Endangered species
    • NHS medical negligence persisting in England ‘despite 24 years of warnings’ | NHS
    • EEOC Accuses Penn of Defying Subpoena
    • are AI translators up for the job?
    © 2026 naijaglobalnews. Designed by Pro.
    • About Us
    • Disclaimer
    • Get In Touch
    • Privacy Policy
    • Terms and Conditions

    Type above and press Enter to search. Press Esc to cancel.