Bryan, G. L. & Norman, M. L. Statistical properties of X-ray clusters: analytic and numerical comparisons. Astrophys. J. 495, 80–99 (1998).
Google Scholar
Chiang, Y.-K., Makiya, R., Ménard, B. & Komatsu, E. The cosmic thermal history probed by Sunyaev–Zeldovich effect tomography. Astrophys. J. 902, 56 (2020).
Google Scholar
Li, Q. et al. THE THREE HUNDRED Project: the evolution of physical baryon profiles. Mon. Not. R. Astron. Soc. 523, 1228–1246 (2023).
Google Scholar
Rohr, E. et al. The cooler past of the intracluster medium in TNG-cluster. Mon. Not. R. Astron. Soc. 536, 1226–1250 (2025).
Google Scholar
Mantz, A. B. et al. The XXL Survey. XVII. X-ray and Sunyaev–Zel’dovich properties of the redshift 2.0 galaxy cluster XLSSC 122. Astron. Astrophys. 620, 2 (2018).
Google Scholar
Gobat, R. et al. Sunyaev-Zel’dovich detection of the galaxy cluster Cl J1449+0856 at z = 1.99: the pressure profile in uv space. Astron. Astrophys. 629, 104 (2019).
Google Scholar
Di Mascolo, L. et al. Forming intracluster gas in a galaxy protocluster at a redshift of 2.16. Nature 615, 809–812 (2023).
Google Scholar
Miller, T. B. et al. A massive core for a cluster of galaxies at a redshift of 4.3. Nature 556, 469–472 (2018).
Google Scholar
Chapman, S. C. et al. Brightest cluster galaxy formation in the z = 4.3 protocluster SPT 2349-56: discovery of a radio-loud active galactic nucleus. Astrophys. J. 961, 120 (2024).
Google Scholar
Zhou, D. et al. A large molecular gas reservoir in the protocluster SPT2349-56 at z = 4.3. Astrophys. J. Lett. 982, 17 (2025).
Google Scholar
Chapman, S. C. et al. An overabundance of radio-AGN in the SPT2349-56 protocluster: preheating the intra-cluster medium. Preprint at https://arxiv.org/abs/2511.17814 (2025).
Sunyaev, R. A. & Zeldovich, Y. B. Formation of clusters of galaxies; protocluster fragmentation and intergalactic gas heating. Astron. Astrophys. 20, 189 (1972).
Google Scholar
Sunyaev, R. A. & Zeldovich, I. B. Microwave background radiation as a probe of the contemporary structure and history of the universe. Annu. Rev. Astron. Astrophys. 18, 537–560 (1980).
Google Scholar
Voit, G. M. Tracing cosmic evolution with clusters of galaxies. Rev. Mod. Phys. 77, 207–258 (2005).
Google Scholar
Wang, G. C. P. et al. Overdensities of submillimetre-bright sources around candidate protocluster cores selected from the South Pole Telescope survey. Mon. Not. R. Astron. Soc. 508, 3754–3770 (2021).
Google Scholar
Hill, R. et al. Megaparsec-scale structure around the protocluster core SPT2349-56 at z = 4.3. Mon. Not. R. Astron. Soc. 495, 3124–3159 (2020).
Google Scholar
McCarthy, I. G., Babul, A., Bower, R. G. & Balogh, M. L. Towards a holistic view of the heating and cooling of the intracluster medium. Mon. Not. R. Astron. Soc. 386, 1309–1331 (2008).
Google Scholar
Henden, N. A., Puchwein, E. & Sijacki, D. The redshift evolution of X-ray and Sunyaev-Zel’dovich scaling relations in the FABLE simulations. Mon. Not. R. Astron. Soc. 489, 2439–2470 (2019).
Google Scholar
Bennett, J. S., Sijacki, D., Costa, T., Laporte, N. & Witten, C. The growth of the gargantuan black holes powering high-redshift quasars and their impact on the formation of early galaxies and protoclusters. Mon. Not. R. Astron. Soc. 527, 1033–1054 (2024).
Google Scholar
Carlstrom, J. E., Holder, G. P. & Reese, E. D. Cosmology with the Sunyaev-Zel’dovich effect. Annu. Rev. Astron. Astrophys. 40, 643–680 (2002).
Google Scholar
Mroczkowski, T. et al. Astrophysics with the spatially and spectrally resolved Sunyaev-Zeldovich effects. A millimetre/submillimetre probe of the warm and hot universe. Space Sci. Rev. 215, 17 (2019).
Google Scholar
Spacek, A., Scannapieco, E., Cohen, S., Joshi, B. & Mauskopf, P. Constraining AGN feedback in massive ellipticals with South Pole telescope measurements of the thermal Sunyaev-Zel’dovich effect. Astrophys. J. 819, 128 (2016).
Google Scholar
Arnaud, M. et al. The universal galaxy cluster pressure profile from a representative sample of nearby systems (REXCESS) and the YSZ–M500 relation. Astron. Astrophys. 517, 92 (2010).
Google Scholar
Maughan, B. J., Giles, P. A., Randall, S. W., Jones, C. & Forman, W. R. Self-similar scaling and evolution in the galaxy cluster X-ray luminosity-temperature relation. Mon. Not. R. Astron. Soc. 421, 1583–1602 (2012).
Google Scholar
Planck Collaboration. Planck 2013 results. XX. Cosmology from Sunyaev-Zeldovich cluster counts. Astron. Astrophys. 571, 20 (2014).
Google Scholar
McDonald, M. et al. The remarkable similarity of massive galaxy clusters from z ~ 0 to z ~ 1.9. Astrophys. J. 843, 28 (2017).
Google Scholar
Mostoghiu, R. et al. The Three Hundred Project: the evolution of galaxy cluster density profiles. Mon. Not. R. Astron. Soc. 483, 3390–3403 (2019).
Google Scholar
Marrone, D. P. et al. LoCuSS: the Sunyaev-Zel’dovich effect and weak-lensing mass scaling relation. Astrophys. J. 754, 119 (2012).
Google Scholar
Bocquet, S. et al. Cluster cosmology constraints from the 2500 deg2 SPT-SZ survey: inclusion of weak gravitational lensing data from Magellan and the Hubble Space Telescope. Astrophys. J. 878, 55 (2019).
Google Scholar
Bigwood, L., Bourne, M. A., Iršič, V., Amon, A. & Sijacki, D. The case for large-scale AGN feedback in galaxy formation simulations: insights from XFABLE. Mon. Not. R. Astron. Soc. 542, 3206–3230 (2025).
Lucie-Smith, L. et al. Cosmological feedback from a halo assembly perspective. Phys. Rev. D. 112, 063541 (2025).
Nagarajan, A. et al. Weak-lensing mass calibration of the Sunyaev-Zel’dovich effect using APEX-SZ galaxy clusters. Mon. Not. R. Astron. Soc. 488, 1728–1759 (2019).
Google Scholar
Andreon, S. et al. Witnessing the intracluster medium assembly at the cosmic noon in JKCS 041. Mon. Not. R. Astron. Soc. 522, 4301–4309 (2023).
Google Scholar
van Marrewijk, J. et al. XLSSC 122 caught in the act of growing up: spatially resolved SZ observations of a z = 1.98 galaxy cluster. Astron. Astrophys. 689, 41 (2024).
Google Scholar
Remus, R.-S., Dolag, K. & Dannerbauer, H. The young and the wild: what happens to protoclusters forming at redshift z ≈ 4? Astrophys. J. 950, 191 (2023).
Google Scholar
Aljamal, E. et al. Mass proxy quality of massive halo properties in the IllustrisTNG and FLAMINGO simulations: I. Hot gas. Mon. Not. R. Astron. Soc. 544, 67–94 (2025).
Bassini, L. et al. The DIANOGA simulations of galaxy clusters: characterising star formation in protoclusters. Astron. Astrophys. 642, 37 (2020).
Google Scholar
Lim, S. et al. Is there enough star formation in simulated protoclusters? Mon. Not. R. Astron. Soc. 501, 1803–1822 (2021).
Google Scholar
Hlavacek-Larrondo, J. et al. X-ray cavities in a sample of 83 SPT-selected clusters of galaxies: tracing the evolution of AGN feedback in clusters of galaxies out to z = 1.2. Astrophys. J. 805, 35 (2015).
Google Scholar
Valentino, F. et al. A giant Lyα nebula in the core of an X-ray cluster at z = 1.99: implications for early energy injection. Astrophys. J. 829, 53 (2016).
Google Scholar
Cielo, S., Babul, A., Antonuccio-Delogu, V., Silk, J. & Volonteri, M. Feedback from reorienting AGN jets. I. Jet-ICM coupling, cavity properties and global energetics. Astron. Astrophys. 617, 58 (2018).
Google Scholar
Heckman, T. M. & Best, P. N. A global inventory of feedback. Galaxies 11, 21 (2023).
Google Scholar
Heckman, T. M., Roy, N., Best, P. N. & Kondapally, R. Mergers, radio jets, and quenching star formation in massive galaxies: quantifying their synchronized cosmic evolution and assessing the energetics. Astrophys. J. 977, 125 (2024).
Google Scholar
Rennehan, D., Babul, A., Moa, B. & Davé, R. The OBSIDIAN model: three regimes of black hole feedback. Mon. Not. R. Astron. Soc. 532, 4793–4809 (2024).
Google Scholar
Huško, F. et al. A hybrid active galactic nucleus feedback model with spinning black holes, winds and jets. Preprint at arxiv.org/abs/2509.05179 (2025)
Begelman, M. C. & Cioffi, D. F. Overpressured cocoons in extragalactic radio sources. Astrophys. J. Lett. 345, 21 (1989).
Google Scholar
Nesvadba, N. P. H., Lehnert, M. D., De Breuck, C., Gilbert, A. M. & van Breugel, W. Evidence for powerful AGN winds at high redshift: dynamics of galactic outflows in radio galaxies during the “Quasar Era”. Astron. Astrophys. 491, 407–424 (2008).
Google Scholar
Fabian, A. C. Observational evidence of active galactic nuclei feedback. Annu. Rev. Astron. Astrophys. 50, 455–489 (2012).
Google Scholar
Chadayammuri, U., Tremmel, M., Nagai, D., Babul, A. & Quinn, T. Fountains and storms: the effects of AGN feedback and mergers on the evolution of the intracluster medium in the ROMULUSC simulation. Mon. Not. R. Astron. Soc. 504, 3922–3937 (2021).
Google Scholar
Grayson, S., Scannapieco, E. & Davé, R. Distinguishing active galactic nuclei feedback models with the thermal Sunyaev–Zel’dovich effect. Astrophys. J. 957, 17 (2023).
Google Scholar
Altamura, E. et al. EAGLE-like simulation models do not solve the entropy core problem in groups and clusters of galaxies. Mon. Not. R. Astron. Soc. 520, 3164–3186 (2023).
Google Scholar
Gardner, A., Baxter, E., Raghunathan, S., Cui, W. & Ceverino, D. Prospects for studying the mass and gas in protoclusters with future CMB observations. Open J. Astrophys. 7, 2 (2024).
Google Scholar
Vogelsberger, M. et al. The uniformity and time-invariance of the intra-cluster metal distribution in galaxy clusters from the IllustrisTNG simulations. Mon. Not. R. Astron. Soc. 474, 2073–2093 (2018).
Google Scholar
Huško, F., Lacey, C. G., Schaye, J., Nobels, F. S. J. & Schaller, M. Winds versus jets: a comparison between black hole feedback modes in simulations of idealized galaxy groups and clusters. Mon. Not. R. Astron. Soc. 527, 5988–6020 (2024).
Google Scholar
Mantz, A. B. et al. The XXL Survey. V. Detection of the Sunyaev-Zel’dovich effect of the redshift 1.9 galaxy cluster XLSSU J021744.1-034536 with CARMA. Astrophys. J. 794, 157 (2014).
Google Scholar
Planck Collaboration. Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 594, 13 (2016).
Google Scholar
Bushouse, H. et al. JWST calibration pipeline. Zenodo https://doi.org/10.5281/zenodo.6984365 (2025).
Bradley, L. et al. Astropy/photutils: 2.0.2. Zenodo https://doi.org/10.5281/zenodo.13989456 (2024).
Fujimoto, S. et al. ALMA census of faint 1.2 mm sources down to ~0.02 mJy: extragalactic background light and dust-poor, high-z galaxies. Astrophys. J. Suppl. Ser. 222, 1 (2016).
Google Scholar
Fujimoto, S. et al. ALMA Lensing Cluster Survey: deep 1.2 mm number counts and infrared luminosity functions at z = 1–8. Astrophys. J. Suppl. Ser. 275, 36 (2024).
Google Scholar
Tazzari, M. Mtazzari/uvplot (v0.1.1). Zenodo https://doi.org/10.5281/zenodo.1003113 (2017).
Wang, T. et al. Discovery of a galaxy cluster with a violently starbursting core at z = 2.506. Astrophys. J. 828, 56 (2016).
Google Scholar
Grishin, K. A. et al. Spectroscopic confirmation of the galaxy clusters CARLA J0950+2743 at z = 2.363 and CARLA-Ser J0950+2743 at z = 2.243. Astron. Astrophys. 693, 1 (2025).
Google Scholar
Travascio, A. et al. X-ray view of a massive node of the cosmic web at z = 3 II. Discovery of extended X-ray emission around a hyperluminous QSO. Preprint at arxiv.org/abs/2508.20074 (2025).
Diemer, B. COLOSSUS: a Python toolkit for cosmology, large-scale structure, and dark matter halos. Astrophys. J. Suppl. Ser. 239, 35 (2018).
Google Scholar
Diemer, B. & Joyce, M. An accurate physical model for halo concentrations. Astrophys. J. 871, 168 (2019).
Google Scholar
Hill, R. et al. Rapid build-up of the stellar content in the protocluster core SPT2349-56 at z = 4.3. Mon. Not. R. Astron. Soc. 512, 4352–4377 (2022).
Google Scholar
Vito, F. et al. Fast supermassive black hole growth in the SPT2349–56 protocluster at z = 4.3. Astron. Astrophys. 689, A130 (2024).
Google Scholar
Heckman, T. M. & Best, P. N. The coevolution of galaxies and supermassive black holes: insights from surveys of the contemporary Universe. Annu. Rev. Astron. Astrophys. 52, 589–660 (2014).
Google Scholar
Nusser, A., Silk, J. & Babul, A. Suppressing cluster cooling flows by self-regulated heating from a spatially distributed population of active galactic nuclei. Mon. Not. R. Astron. Soc. 373, 739–746 (2006).
Google Scholar
Jennings, F. J., Babul, A., Davé, R., Cui, W. & Rennehan, D. HYENAS: X-ray bubbles and cavities in the intragroup medium. Mon. Not. R. Astron. Soc. 536, 145–165 (2025).
Google Scholar
Kondapally, R. et al. Cosmic evolution of radio-AGN feedback: confronting models with data. Mon. Not. R. Astron. Soc. 523, 5292–5305 (2023).
Google Scholar
Venkateshwaran, A. et al. Kinematic analysis of z = 4.3 galaxies in the SPT2349–56 protocluster core. Astrophys. J. 977, 161 (2024).
Spilker, J. S. et al. Ubiquitous molecular outflows in z > 4 massive, dusty galaxies. II. Momentum-driven winds powered by star formation in the early Universe. Astrophys. J. 905, 86 (2020).
Google Scholar
Duan, X. & Guo, F. On the energy coupling efficiency of AGN outbursts in galaxy clusters. Astrophys. J. 896, 114 (2020).
Google Scholar
O’Dea, C. P. The compact steep-spectrum and gigahertz peaked-spectrum radio sources. Publ. Astron. Soc. Pac. 110, 493–532 (1998).
Google Scholar
Yamada, M., Sugiyama, N. & Silk, J. The Sunyaev-Zeldovich effect by cocoons of radio galaxies. Astrophys. J. 522, 66–73 (1999).
Google Scholar
Bromberg, O., Nakar, E., Piran, T. & Sari, R. The propagation of relativistic jets in external media. Astrophys. J. 740, 100 (2011).
Google Scholar
Cen, R. Global preventive feedback of powerful radio jets on galaxy formation. Proc. Natl Acad. Sci. USA 121, 2402435121 (2024).
Google Scholar
Boselli, A., Fossati, M. & Sun, M. Ram pressure stripping in high-density environments. Astron. Astrophys. Rev. 30, 3 (2022).
Google Scholar
Astropy Collaboration. The Astropy Project: sustaining and growing a community-oriented open-source project and the latest major release (v5.0) of the core package. Astrophys. J. 935, 167 (2022).
Google Scholar
Ginsburg, A. et al. astroquery: an astronomical web-querying package in Python. Astron. J. 157, 98 (2019).
Google Scholar
CASA Team. CASA, the common astronomy software applications for radio astronomy. Publ. Astron. Soc. Pac. 134, 114501 (2022).
Google Scholar
Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).
Google Scholar
Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).
Google Scholar
The pandas development team. pandas-dev/pandas: Pandas. Zenodo https://doi.org/10.5281/zenodo.3509134 (2025).
Ginsburg, A. et al. radio-astro-tools/spectral-cube: v.0.4.4. Zenodo https://doi.org/10.5281/zenodo.2573901 (2019).
