Close Menu

    Subscribe to Updates

    Get the latest creative news from FooBar about art, design and business.

    What's Hot

    Myanmar election delivers walkover win for military-backed political party | Elections News

    Chinese state media views Starmer’s visit as act of economic pragmatism | China

    Katharine Burr Blodgett’s legacy comes to light

    Facebook X (Twitter) Instagram
    Facebook X (Twitter) YouTube LinkedIn
    Naija Global News |
    Saturday, January 31
    • Business
    • Health
    • Politics
    • Science
    • Sports
    • Education
    • Social Issues
    • Technology
    • More
      • Crime & Justice
      • Environment
      • Entertainment
    Naija Global News |
    You are at:Home»Science»Quantum-amplified global-phase spectroscopy on an optical clock transition
    Science

    Quantum-amplified global-phase spectroscopy on an optical clock transition

    onlyplanz_80y6mtBy onlyplanz_80y6mtOctober 9, 2025008 Mins Read
    Share Facebook Twitter Pinterest LinkedIn Tumblr Email
    Quantum-amplified global-phase spectroscopy on an optical clock transition
    Fig. 1: Experimental setup for entangled time-reversal GPS.
    Share
    Facebook Twitter LinkedIn Pinterest Email

  • Ludlow, A. D., Boyd, M. M., Ye, J., Peik, E. & Schmidt, P. O. Optical atomic clocks. Rev. Mod. Phys. 87, 637–701 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Ushijima, I., Takamoto, M., Das, M., Ohkubo, T. & Katori, H. Cryogenic optical lattice clocks. Nat. Photon. 9, 185–189 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Oelker, E. et al. Demonstration of 4.8 × 10−17 stability at 1 s for two independent optical clocks. Nat. Photon. 13, 714–719 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Schioppo, M. et al. Ultrastable optical clock with two cold-atom ensembles. Nat. Photon. 11, 48–52 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Li, J. et al. A strontium lattice clock with both stability and uncertainty below 5 × 10−18. Metrologia 61, 015006 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Robinson, J. M. et al. Direct comparison of two spin-squeezed optical clock ensembles at the 10−17 level. Nat. Phys. 20, 208–213 (2024).

    Article 
    CAS 

    Google Scholar 

  • Zheng, X. et al. Differential clock comparisons with a multiplexed optical lattice clock. Nature 602, 425–430 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Pezzè, L., Smerzi, A., Oberthaler, M. K., Schmied, R. & Treutlein, P. Quantum metrology with nonclassical states of atomic ensembles. Rev. Mod. Phys. 90, 035005 (2018).

    Article 
    ADS 
    MathSciNet 

    Google Scholar 

  • Monz, T. et al. 14-qubit entanglement: creation and coherence. Phys. Rev. Lett. 106, 130506 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Pogorelov, I. et al. Compact ion-trap quantum computing demonstrator. PRX Quantum 2, 020343 (2021).

    Article 
    ADS 

    Google Scholar 

  • Leibfried, D. et al. Creation of a six-atom ‘Schrödinger cat’ state. Nature 438, 639–642 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Cao, A. et al. Multi-qubit gates and Schrödinger cat states in an optical clock. Nature 634, 315–320 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Kitagawa, M. & Ueda, M. Squeezed spin states. Phys. Rev. A 47, 5138–5143 (1993).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Yurke, B., McCall, S. L. & Klauder, J. R. SU(2) and SU(1,1) interferometers. Phys. Rev. A 33, 4033–4054 (1986).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Wineland, D. J., Bollinger, J. J., Itano, W. M. & Heinzen, D. J. Squeezed atomic states and projection noise in spectroscopy. Phys. Rev. A 50, 67–88 (1994).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Davis, E., Bentsen, G. & Schleier-Smith, M. Approaching the Heisenberg limit without single-particle detection. Phys. Rev. Lett. 116, 053601 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Fröwis, F., Sekatski, P. & Dür, W. Detecting large quantum Fisher information with finite measurement precision. Phys. Rev. Lett. 116, 090801 (2016).

    Article 
    ADS 
    MathSciNet 
    PubMed 

    Google Scholar 

  • Sjöqvist, E. Nonadiabatic holonomic single-qubit gates in off-resonant Λ systems. Phys. Lett. A 380, 65–67 (2016).

    Article 
    ADS 
    MathSciNet 

    Google Scholar 

  • Aharonov, Y. & Anandan, J. Phase change during a cyclic quantum evolution. Phys. Rev. Lett. 58, 1593–1596 (1987).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar 

  • Kaubruegger, R., Vasilyev, D. V., Schulte, M., Hammerer, K. & Zoller, P. Quantum variational optimization of Ramsey interferometry and atomic clocks. Phys. Rev. X 11, 041045 (2021).

    CAS 

    Google Scholar 

  • Liu, Q. et al. Enhancing dynamic range of sub-standard-quantum-limit measurements via quantum deamplification. Phys. Rev. Lett. 135, 040801 (2025).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Marciniak, C. D. et al. Optimal metrology with programmable quantum sensors. Nature 603, 604–609 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Mehlstäubler, T. E., Grosche, G., Lisdat, C., Schmidt, P. O. & Denker, H. Atomic clocks for geodesy. Rep. Prog. Phys. 81, 064401 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Safronova, M. S. et al. Search for new physics with atoms and molecules. Rev. Mod. Phys. 90, 025008 (2018).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar 

  • Kolkowitz, S. et al. Gravitational wave detection with optical lattice atomic clocks. Phys. Rev. D 94, 124043 (2016).

    Article 
    ADS 

    Google Scholar 

  • Sanner, C. et al. Optical clock comparison for Lorentz symmetry testing. Nature 567, 204–208 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Wcisło, P. et al. New bounds on dark matter coupling from a global network of optical atomic clocks. Sci. Adv. 4, eaau4869 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Song, C. et al. Generation of multicomponent atomic Schrödinger cat states of up to 20 qubits. Science 365, 574–577 (2019).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar 

  • Omran, A. et al. Generation and manipulation of Schrödinger cat states in Rydberg atom arrays. Science 365, 570–574 (2019).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar 

  • Finkelstein, R. et al. Universal quantum operations and ancilla-based read-out for tweezer clocks. Nature 634, 321–327 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gross, C., Zibold, T., Nicklas, E., Estève, J. & Oberthaler, M. K. Nonlinear atom interferometer surpasses classical precision limit. Nature 464, 1165–1169 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Riedel, M. F. et al. Atom-chip-based generation of entanglement for quantum metrology. Nature 464, 1170–1173 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Hosten, O., Engelsen, N. J., Krishnakumar, R. & Kasevich, M. A. Measurement noise 100 times lower than the quantum-projection limit using entangled atoms. Nature 529, 505–508 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Bao, H. et al. Spin squeezing of 1011 atoms by prediction and retrodiction measurements. Nature 581, 159–163 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Anders, F. et al. Momentum entanglement for atom interferometry. Phys. Rev. Lett. 127, 140402 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Greve, G. P., Luo, C., Wu, B. & Thompson, J. K. Entanglement-enhanced matter-wave interferometry in a high-finesse cavity. Nature 610, 472–477 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pedrozo-Peñafiel, E. et al. Entanglement on an optical atomic-clock transition. Nature 588, 414–418 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Sewell, R. J. et al. Magnetic sensitivity beyond the projection noise limit by spin squeezing. Phys. Rev. Lett. 109, 253605 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Muessel, W., Strobel, H., Linnemann, D., Hume, D. B. & Oberthaler, M. K. Scalable spin squeezing for quantum-enhanced magnetometry with Bose-Einstein condensates. Phys. Rev. Lett. 113, 103004 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Cassens, C., Meyer-Hoppe, B., Rasel, E. & Klempt, C. Entanglement-enhanced atomic gravimeter. Phys. Rev. X 15, 011029 (2025).

    CAS 

    Google Scholar 

  • Kruse, I. et al. Improvement of an atomic clock using squeezed vacuum. Phys. Rev. Lett. 117, 143004 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Appel, J. et al. Mesoscopic atomic entanglement for precision measurements beyond the standard quantum limit. Proc. Natl Acad. Sci. USA 106, 10960–10965 (2009).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nolan, S. P., Szigeti, S. S. & Haine, S. A. Optimal and robust quantum metrology using interaction-based readouts. Phys. Rev. Lett. 119, 193601 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Hosten, O., Krishnakumar, R., Engelsen, N. J. & Kasevich, M. A. Quantum phase magnification. Science 352, 1552–1555 (2016).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar 

  • Linnemann, D. et al. Quantum-enhanced sensing based on time reversal of nonlinear dynamics. Phys. Rev. Lett. 117, 013001 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Gilmore, K. A. et al. Quantum-enhanced sensing of displacements and electric fields with two-dimensional trapped-ion crystals. Science 373, 673–678 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Colombo, S. et al. Time-reversal-based quantum metrology with many-body entangled states. Nature Physics 18, 925–930 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Schleier-Smith, M. H., Leroux, I. D. & Vuletić, V. Squeezing the collective spin of a dilute atomic ensemble by cavity feedback. Phys. Rev. A 81, 021804 (2010).

    Article 
    ADS 

    Google Scholar 

  • Braverman, B. et al. Near-unitary spin squeezing in 171Yb. Phys. Rev. Lett. 122, 223203 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Bishof, M., Zhang, X., Martin, M. J. & Ye, J. Optical spectrum analyzer with quantum-limited noise floor. Phys. Rev. Lett. 111, 093604 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Solomon, I. Rotary spin echoes. Phys. Rev. Lett. 2, 301–302 (1959).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Blatt, S. et al. Rabi spectroscopy and excitation inhomogeneity in a one-dimensional optical lattice clock. Phys. Rev. A 80, 052703 (2009).

    Article 
    ADS 

    Google Scholar 

  • Norcia, M. A. et al. Seconds-scale coherence on an optical clock transition in a tweezer array. Science 366, 93–97 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Takamoto, M., Takano, T. & Katori, H. Frequency comparison of optical lattice clocks beyond the Dick limit. Nat. Photon. 5, 288–292 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Nicholson, T. L. et al. Comparison of two independent Sr optical clocks with 1 × 10−17 stability at 103 s. Phys. Rev. Lett. 109, 230801 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Riehle, F. Optical clock networks. Nat. Photon. 11, 25–31 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Li, Y. et al. Multiparameter estimation with an array of entangled atomic sensors. Preprint at https://arxiv.org/abs/2504.08677 (2025).

  • Malia, B. K., Wu, Y., Martínez-Rincón, J. & Kasevich, M. A. Distributed quantum sensing with mode-entangled spin-squeezed atomic states. Nature 612, 661–665 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Dzuba, V. A. et al. Strongly enhanced effects of Lorentz symmetry violation in entangled Yb+ ions. Nat. Phys. 12, 465–468 (2016).

    Article 
    CAS 

    Google Scholar 

  • Zhou, Z., Carrasco, S. C., Sanner, C., Malinovsky, V. S. & Folman, R. Geometric phase amplification in a clock interferometer for enhanced metrology. Sci. Adv. 11, eadr6893 (2025).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Koczor, B., Zeier, R. & Glaser, S. J. Fast computation of spherical phase-space functions of quantum many-body states. Phys. Rev. A 102, 062421 (2020).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar 

  • clock globalphase optical Quantumamplified spectroscopy transition
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
    Previous ArticleRussia-Ukraine war: List of key events, day 1,323 | Russia-Ukraine war News
    Next Article Economic Uncertainty Spurred Campus Cuts in September
    onlyplanz_80y6mt
    • Website

    Related Posts

    Light-powered bacteria become living chemical factories

    January 31, 2026

    A bomb cyclone and extreme cold will freeze the eastern U.S.—again

    January 31, 2026

    Can academia handle my religious faith?

    January 30, 2026
    Add A Comment
    Leave A Reply Cancel Reply

    Top Posts

    Watch Lady Gaga’s Perform ‘Vanish Into You’ on ‘Colbert’

    September 9, 20251 Views

    Advertisers flock to Fox seeking an ‘audience of one’ — Donald Trump

    July 13, 20251 Views

    A Setback for Maine’s Free Community College Program

    June 19, 20251 Views
    Stay In Touch
    • Facebook
    • YouTube
    • TikTok
    • WhatsApp
    • Twitter
    • Instagram
    Latest Reviews

    At Chile’s Vera Rubin Observatory, Earth’s Largest Camera Surveys the Sky

    By onlyplanz_80y6mtJune 19, 2025

    SpaceX Starship Explodes Before Test Fire

    By onlyplanz_80y6mtJune 19, 2025

    How the L.A. Port got hit by Trump’s Tariffs

    By onlyplanz_80y6mtJune 19, 2025

    Subscribe to Updates

    Get the latest tech news from FooBar about tech, design and biz.

    Most Popular

    Watch Lady Gaga’s Perform ‘Vanish Into You’ on ‘Colbert’

    September 9, 20251 Views

    Advertisers flock to Fox seeking an ‘audience of one’ — Donald Trump

    July 13, 20251 Views

    A Setback for Maine’s Free Community College Program

    June 19, 20251 Views
    Our Picks

    Myanmar election delivers walkover win for military-backed political party | Elections News

    Chinese state media views Starmer’s visit as act of economic pragmatism | China

    Katharine Burr Blodgett’s legacy comes to light

    Recent Posts
    • Myanmar election delivers walkover win for military-backed political party | Elections News
    • Chinese state media views Starmer’s visit as act of economic pragmatism | China
    • Katharine Burr Blodgett’s legacy comes to light
    • Homes with air source heat pumps or solar panels for sale in England – in pictures
    • One in seven food delivery businesses in England are ‘dark kitchens’, study shows | Food & drink industry
    © 2026 naijaglobalnews. Designed by Pro.
    • About Us
    • Disclaimer
    • Get In Touch
    • Privacy Policy
    • Terms and Conditions

    Type above and press Enter to search. Press Esc to cancel.